Algebra I
 11-5
 Square Roots of
 Variable Expressions

True / False

1) x is always positive. False; $\boldsymbol{x}=-7$
2) $-x$ is always negative. False; $x=-7 \quad-x=-(-7)$
3) x^{2} is always positive. False; $0^{2}=0$, which is not positive.
4) x^{2} is never negative. True.
5) The answer to a square root may not be negative

$$
\text { Thus, } \sqrt{x^{2}}=\underline{|x|}
$$

$$
\begin{aligned}
& \sqrt{7^{2}}=7 \\
& \sqrt{2^{2}}=2 \\
& \sqrt{(642)^{2}}=642 \\
& \sqrt{(-4)^{2}}=4, \text { answer to a square root } \\
& \text { cannot be negative }
\end{aligned}
$$

True/ False

1) x is always positive. False; $x=-7$
2) x is always negative. False; $x=-7-x=-(-7)$
3) x^{2} is always positive. False; $0^{2}=0$, which is
not positive. x^{2} is never negative. True.
5) The answer to a square root may not be negative
Thus, $\sqrt{x^{2}}=\underline{\|x\|}$

$$
\begin{array}{rr}
27, \sqrt{x^{2}}=\sqrt{25} & \text { 35) } 81 y^{2}-16=0+16 \\
|x|>5 & \frac{81 y^{2}}{81}=\frac{16}{81} \\
x= \pm 5 & \sqrt{y^{2}}=\sqrt{\frac{16}{81}} \\
\{ \pm 5\} & |y|=\frac{4}{9} \\
& \left\{ \pm \frac{4}{9}\right\}
\end{array}
$$

Solve. Round each root to the nearest tenth.

$$
\text { 43) } \begin{aligned}
& c^{2}-212^{22^{2}}=0+212 \\
& \sqrt{c^{2}}=\sqrt{212} \\
&|c|=14.56 \\
&\{ \pm 14.56\}
\end{aligned}
$$

Assignment:

Pg. 526 2-50 even, (skip 26)

For questions 2-24, do part a) simplify part b) round to hundredths, if necessary

